Cellular Mechanotransduction Relies on Tension-Induced and Chaperone-Assisted Autophagy
نویسندگان
چکیده
Mechanical tension is an ever-present physiological stimulus essential for the development and homeostasis of locomotory, cardiovascular, respiratory, and urogenital systems. Tension sensing contributes to stem cell differentiation, immune cell recruitment, and tumorigenesis. Yet, how mechanical signals are transduced inside cells remains poorly understood. Here, we identify chaperone-assisted selective autophagy (CASA) as a tension-induced autophagy pathway essential for mechanotransduction in muscle and immune cells. The CASA complex, comprised of the molecular chaperones Hsc70 and HspB8 and the cochaperone BAG3, senses the mechanical unfolding of the actin-crosslinking protein filamin. Together with the chaperone-associated ubiquitin ligase CHIP, the complex initiates the ubiquitin-dependent autophagic sorting of damaged filamin to lysosomes for degradation. Autophagosome formation during CASA depends on an interaction of BAG3 with synaptopodin-2 (SYNPO2). This interaction is mediated by the BAG3 WW domain and facilitates cooperation with an autophagosome membrane fusion complex. BAG3 also utilizes its WW domain to engage in YAP/TAZ signaling. Via this pathway, BAG3 stimulates filamin transcription to maintain actin anchoring and crosslinking under mechanical tension. By integrating tension sensing, autophagosome formation, and transcription regulation during mechanotransduction, the CASA machinery ensures tissue homeostasis and regulates fundamental cellular processes such as adhesion, migration, and proliferation.
منابع مشابه
Tension-induced autophagy
Impairment of autophagy in patients and animal models severely affects mechanically strained tissues such as skeletal muscle, heart, lung and kidney, leading for example to muscle dystrophy, cardiomyopathy and renal injury. However, the reason for this high reliance on autophagy remained largely elusive. Recent work in our lab now provides a possible explanation. We identified chaperone-assiste...
متن کاملChaperone-assisted proteostasis is essential for mechanotransduction in mammalian cells
Maintaining the dynamic proteome of a living cell in the face of an ever-changing environment depends on a fine-tuned balance of protein synthesis and protein degradation. Molecular chaperones exert key functions during protein homeostasis (proteostasis). They associate with nonnative client proteins following synthesis or damage and facilitate client sorting and folding. When client proteins a...
متن کاملChaperone-Assisted Selective Autophagy Is Essential for Muscle Maintenance
How are biological structures maintained in a cellular environment that constantly threatens protein integrity? Here we elucidate proteostasis mechanisms affecting the Z disk, a protein assembly essential for actin anchoring in striated muscles, which is subjected to mechanical, thermal, and oxidative stress during contraction [1]. Based on the characterization of the Drosophila melanogaster co...
متن کاملInduction and adaptation of chaperone-assisted selective autophagy CASA in response to resistance exercise in human skeletal muscle
Chaperone-assisted selective autophagy (CASA) is a tension-induced degradation pathway essential for muscle maintenance. Impairment of CASA causes childhood muscle dystrophy and cardiomyopathy. However, the importance of CASA for muscle function in healthy individuals has remained elusive so far. Here we describe the impact of strength training on CASA in a group of healthy and moderately train...
متن کاملChaperone-assisted degradation: multiple paths to destruction.
Molecular chaperones are well known as facilitators of protein folding and assembly. However, in recent years multiple chaperone-assisted degradation pathways have also emerged, including CAP (chaperone-assisted proteasomal degradation), CASA (chaperone-assisted selective autophagy), and CMA (chaperone-mediated autophagy). Within these pathways chaperones facilitate the sorting of non-native pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 23 شماره
صفحات -
تاریخ انتشار 2013